

20%...

Figure 1

Average Green Cost Premium vs. Level of Green Certification
for Offices and Schools

Standard
Refrigeration, Inc.
San Juan, PR

LEED NC 2.1 Platinum **LEED-EB+OM** Platinum **Energy Star** Rating +95

67% energy savings

55% water savings

IEQ Focus

Conditioned and filtered outdoor air
Low emitting materials
90% spaces with view

10-year Simple Payback – Total Project Cost

EEM Payback at <2 Years

- •First LEED Certified building in Puerto Rico
- •Second LEED-EBOM project in Puerto Rico
- •Fifth LEED Platinum Building In world

McNeil Healthcare, LLC

Las Piedras, Puerto Rico

LEED-EB 2.0

Certified 39 Points

29% Energy Intensity Reduction

55% Potable Water Savings

67% Solid Waste Reduction

- •16 Acre Conservation Area
- Stormwater Mitigation
- •REC Credits
- Continuous Commissioning
- Comprehensive Recycling
- Green Cleaning
- •Environmentally Preferable Purchasing Policy
- •Continuous IAQ Management

Owner: McNeil Consumer Healthcare, LLC

- •Second LEED Certified building in Puerto Rico
- •First LEED-EB project in Puerto Rico
- •First LEED certified Pharmaceutical cGMP facility in the world

Marriott Courtyard

Convention Center
District San Juan, PR

LEED NC v 2.2 Silver (2012)

+28 % Energy savings

+45% Potable Water Savings

+25 % Stormwater Load Reduction

IEQ Focus

Low-Emitting Finish
Materials
High Ventilation Rates
Natural Light + Views

Continuous VE Process

IAMT

Hospital Hermanos Melendez Bayamon, PR

LEED NC v 2.2 Silver (2012)

+21 % Energy savings

+50%Potable Water Savings

+50 % Stormwater Load Reduction

IEQ Focus

Low-Emitting Finish
Materials
High Ventilation Rates
Natural Light + Views

Continuous VE Process

Sartorius Stedim Filters

Yauco, Puerto Rico

LEED NC v 3 2009 Gold (2011)

22 + 8 %

Energy savings

- •Efficiency = 22%
- •Renewables = 10%

Integrated Water Management Design

+85 % Potable Water Savings

Heat Island Reduction

Native and Adaptive Landscaping

LCA Materials Selection Protocol

IEQ Focus

- •OA Ventilation Control
- •Low VOC Finishes
- Daylighting Controls

Parametric Energy Modeling + Water Balance

Primary EEM Parameters	Baseline "Market" Case	ASHRAE Case	Design Case
Window system	.7 SHGC Glass / U=1.0	0.25 SHGC Glass / U=1.2	0.35 SHGC Glass / U=.80
Perimeter Wall	Mass Wall Only - furred, no Insul.	Steel Frame Wall, R-13 Insulation	Mass Wall Furred with R-11 Insul.
Roof Membrane	Modified Bitumen SBS Built-up	TPO "Cool Roof" Membrane	TPO "Cool Roof" Membrane
Roof insulation	R-12 Roof	R-15 Roof,	R-20 Roof,
Lighting Power Density (LPD)	1.3 LPD / 1.0	1.3 LPD / 1.0	0.8 LPD
Controls	Room Thermostatic Control	Room Occ Ctrls / BAS	Room Occ Ctrls / BAS
Chiller Plant	.75 kw/ton chiller (400 Tons)	Rooftop Package Units - 400 t, EER =10.0	0.50 kw/ton chillers (300 Tons + VSD)
Chilled Water Loop	Primary/Secondary Loop	Package	Primary Loop w/ VSD Pumps
Fresh Air Supply	AHU with VAV	Package	DOAS - Enthalpy Wheel (80 Tons)
Renewable Energy Source	-	-	138 Kw Photovoltaic Array

Annual Electricity Consumption - kWh x 1000

Energy Use	"Market" Building"	ASHRAE Baseline	Proposed Design
Space Cool	551	484	170.1
Heat Reject.	125		17.6
Hot Water	23	19	3.4
Vent. Fans	253	438	272.8
Pumps & Aux.	171		86.9
Ext. Usage	58	21	4.9
Misc. Equip.	1,276	1,276	1,267.30
Task Lights	41	41	41.1
Area Lights	267	295	151.4
138 Kw Photovoltaic Array			(215)
Total kWh x 1000	2,764	2,574	1,800.50
			2,015.50

Energy Use	"Market" Building"		ASHRAE Baseline	Proposed Design	
Estimated Annual Energy	\$	580,440 \$	540,561	\$	423,255
Consumption @ \$.21 / kWh				\$	378,105
Estimated Annual Energy Savings @					
\$.21 / kWh					
Simple EEM	\$	157,185 \$	117,306		
EEM+PV	\$	202,335 \$	162,456		
Percent Improvement (EEM)		27%	22%		
Percent Improvement (EEM+PV)		35%	30%		

LEED Projected Costs = A Value Proposition

Soft Costs			
Project Registration with the GBCI*	\$ 900	?	
Certification Costs	\$ 2,250	?	
Energy Modeling Studies	\$ 15,000	?	
Building Systems Commissioning	\$ 50,000	?	
Architecture Fees**	\$		
Sub-Total – LEED Soft Costs	\$ 68,150	?	;

Design Case - Primary LEED Measures	First Cost / (Savings)	Annual Savings	ROI
Permeable Paving at Parking	\$ 35,000	N/A	
Concrete Pavement	\$ (5,000)	N/A	
Bicycle Racks	\$ 1,500	N/A	
Interior Finish Materials - Recycled, Local, Low Emitting	\$	N/A	
Non-Potable Water Harvest - 218,000 Gal Rainwater Cistern	\$ 85,000	\$ 56,000	1.52
Sub-Total LEED Measures	\$ 116.500	\$ 56,000	2.08

Design Case - Energy Efficiency Measures	First Cost / (Savings)	Annual Energy Savings	ROI
Window system - 0.35 SHGC Glass	\$ 53,838	\$ 19,250	2.80
Perimeter Wall Insulation- R-11	\$ 38,695	\$ 27,125	1.43
Roof Membrane - TPO "Cool Roof" + insulation - R-25	\$ 79,219	\$ 9,310	8.51
Solar Shading Devices at Office Windows	\$ 167,020	\$ 13,750	12.15
Chillers – 2 x 150 Tons w/ VSD. Performance = 0.50 kw/ton	\$ (62,500)	\$ 28,000	(0.45)
Variable Primary Chilled Water Loop			
Enthalpy Wheel (80 Tons) Fresh Air Supply	\$ 76,000	\$ 13,000	5.85
Lighting Power Density (LPD) = 0.78	\$ (148,573)	\$ 39,250	(3.79)
Lighting Controls - Daylighting (office) / Occupancy (ALL)	\$ 18,500	\$ 7,500	2.47
Smaller Electrical Substation - From 2,500 KV to 2,000 KV	\$ (250,000)		N/A
Sub Total – Energy Efficiency Measures	\$ (27,801)	\$ 157,185	(0.18)
138 KW Photovoltaic Array	\$ 750,000	\$ 45,000	16.67
Whole Building Simple Payback	\$ 906,849	\$ 258,185	3.51
Estimated Value of Avoided Costs over 20 Year Period	\$ 906,849	\$ 5,163,700	\$ 4,256,851

^{*} GBCI is Green Building Certification Institute, the Certifying body of the U.S. Green Building Council

^{**}The Architecture firm's experience with LEED projects enables them to integrate LEED tasks into the design process.

Legacy Homes Waukeegan, Illinois

LEED for Homes Platinum (82 points!)

Home Energy Standards (HERS) Index of 60

- •Heat Recovery Ventilation
- Radiant Floors
- Super Insulated

Built in Established Neighborhood

Rain Gardens + Native Landscaping

35 % Potable Water Savings

LCA Materials Selection Protocol

IEQ Focus

OA Ventilation Control
Low VOC Finishes
Daylighting Controls

Tunneling through the Cost Barrier

What do these projects have in Common?

From Day 1...

- Abiding support from senior decision makers
- Clear green design goals owner + team alignment of purpose
- Project scope includes systems and finishes
- •LEED process starts during conceptual design
- The project can meet all of the prerequisites

This Age, what does it demand of me?"

-Joshua Cooper Ramo The Age of the Unthinkable

Global Warming Action Matrix

Global Walling Action Waterx						
	Action Taken?					
Global Warming is	Yes?	No?				
False?	Total Global Economic Cost 1% GGNP (Jeffrey Sachs) Worst Case – Changes cause worldwide economic crisisHmm	No problem – But the preponderance of independent scientific consensus indicates that this scenario is improbable.				
True?	Total Global Economic Cost 1% GGNP (Jeffrey Sachs) Effective action begins the process of arrest and reversal of negative climate impacts! A new clean green economy emerges and prospers	Progressive erosion of natural, social and economic systems, eventually leading to catastrophic collapse The end of the world as we know it				

Global Warming - Proof

Regenerative Design

Humans intentionally partnering with Nature – Actively Co-Evolving the Whole System

Restorative Design

Humans doing things to Nature – Assisting with the evolution of sub-systems

Sustainable Design

Neutral – "100% less bad" (Wm. McDonough)

Green High Performance DesignRelative Improvement

LEED, Green Globes, BREEM

Conventional System

"One step better than breaking the law" (Croxton)

From: Integrative Design Collaborative

Understanding Green Building

Approach:

Holistic / systems thinking
Align Purpose
Establish a vision + set goals
Identify opportunities & challenges

Design Team:

Multidisciplinary (green building expert)
Include systems consultants from project outset

Collaboration & Tradeoffs:

Identify synergies between systems, design strategies, & technologies

Understanding Green Building

Embrace the Process with an Open Mind It is about Work Well Done, not LEED Points

- Mindset Owner: Buy-in and long term commitment Sustainability Team: attitude, will, persistence
- Process Integrated, interdisciplinary, all parties engaged early
- •Tools Team management + guidance, metrics, benchmarks, modeling programs
- •Techniques / Products Materials and methods

You can't do green design 'to' someone — It needs to be done 'with' everyone

This is about moving from being 'experts' to being 'co-learners'

We need to move from an unacknowledged competitive stance to a genuine cooperative stance.

Instead of stating what you know, introduce what you don't know.

If you don't feel insecure doing this work, you're not doing this work.

Adopt Energy Efficiency and Ecological Design Strategies **Early**

Opportunites for Cost-effective Ecological Design Solutions

Costs raise if Ecological Design Solutions are addressed later in the Design Process

Project

Standard Refrigeration Co. Inc. San Juan, PR

Owner:

Standard Refrigeration Inc.

LEED NC 2.1

Platinum

Building type:

Office building.

67%

Size:

2-story building 9,500 sq ft

energy savings

Date of completi

September 2006

55%

water savings

ROI Project:

10 Years (Energy Savings Pay for Building)

IEQ Focus

90%

spaces with view

Standard Refrigeration has always enjoyed being on the cutting edge of construction.

Their new headquarters was the first building to be classified as **GREEN** in Puerto Rico by the United States Green Building Council, attaining a **Platinum** certification level

In this world there are only two tragedies.

One is not getting what one wants, and the other is getting it.

nature knows no good or evil. It only understands balance and imbalance.

What is a cynic?

A man who knows the price of everything and the value of nothing Oscar Wilde,